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High-throughput phenotyping of a large tomato collection under water 
deficit: Combining UAVs’ remote sensing with conventional leaf-level 
physiologic and agronomic measurements 
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A B S T R A C T   

Field high-throughput phenotyping (HTPP) studies are highly needed to study water use efficiency (WUE), stress 
tolerance capacities, yield and quality in tomato to improve crop breeding strategies and adapt them to the 
climatic change scenario. In this study, UAV remote sensing is tested by comparison with leaf-level physiologic 
and agronomic measurements in a collection including 91 tomato genotypes. These genotypes include long shelf- 
life (LSL) and non-LSL (CON) Mediterranean landraces, cultivated under well-watered (WW, covering 100% crop 
evapotranspiration demands) and water deficit (WD, irrigation stopped one month after plantlet transplantation 
to field) conditions. Aerial remote sensing (including multispectral imaging), leaf gas-exchange, leaf carbon 
isotope composition (δ13C), fruit production and quality measurements, including total soluble solids and acidity, 
were performed. Differences between CON and LSL genotypes were observed in leaf-level physiologic and remote 
sensing measurements under both WW and WD conditions, while for agronomic measurements differences were 
only found for quality traits under WW conditions. Significant relationships were detected between remote 
sensing and leaf-level physiologic and agronomic measurements when considering all genotypes and treatments. 
However, different regressions were described for CON and LSL genotypes, mainly due their different physiologic 
behavior and response to WD. For instance, for the same NDVI value LSL genotypes showed near 30% lower AN 
and half gs than CON, and therefore higher intrinsic water use efficiency (WUEi). Also, tomato fruit quality was 
approached through remote sensing measurements, being correlated with multispectral indices. In conclusion, 
this study shows how remote sensing can help to optimize tomato physiologic and agronomic phenotyping 
processes. However, it also points out that the inclusion of genotypes with a different water use efficiency 
behavior and response to WD lead to a large scattering in the relationships between remote sensing and phys-
iologic and agronomic traits and prevents to obtention of reliable models.   

1. Introduction 

Global climate models based into the climatic change predict in-
creases in the annual mean temperature for the next decades, especially 
in the summer season (Battisti and Naylor, 2009). In the Mediterranean 
basin, temperature increase will be accompanied by reductions in the 
rainfall from 25% to 50% (Giorgi and Lionello, 2008; Hertig and 
Tramblay, 2017; Raymond et al., 2019). Considering this scenario, 
improving water use efficiency (WUE) and stress tolerance in crops 
becomes a challenge to meet global food demands at the lowest agri-
cultural water consumption. The increase of plants WUE is usually 
related to lower leaf transpiration rates, leading to increased leaf 

temperature, and results in lower photosynthetic rates, plant growth and 
yield (Condon et al., 2002; Eamus, 1991; Medrano et al., 2015). Thus, 
there is an urgent need to characterize the performance of large numbers 
of crop genotypes under field conditions in order to detect those with 
increased WUE and drought tolerance, but still sustaining acceptable 
commercial fruit production and quality (Mickelbart et al., 2015). For 
this purpose, the use of high-throughput phenotyping (HTPP) technol-
ogies, usually based on remote sensing, allow to obtain detailed, valu-
able and non-invasive information suitable to be related and to 
complement plant-level measurements in order to drive novel strategies 
in crop improvement towards climate change (Araus et al., 2018). 

The use of remote sensing technology mounted on unmanned aerial 
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vehicles (UAVs) to monitor crop fields has revolutionized field pheno-
typing in the last years (Adão et al., 2017; Araus et al., 2018; Gago et al., 
2015; Salas Fernandez et al., 2017). Those UAVs employed to monitor 
vegetation are usually equipped with red-green-blue (RGB) and 
multi-spectral cameras to collect data about vegetation coverage, plant 
size and height, and allow to measure vegetation indices (VIs) based on 
canopy reflectance and thermography (Gago et al., 2015; Goel et al., 
2003; Zarco-Tejada et al., 2012). The VIs have been used for plant 
phenotyping to assess the plant physiological status under abiotic 
stresses in different herbaceous crops including wheat, maize and to-
mato (Babar et al., 2006; Cairns et al., 2012; Comar et al., 2012; Gian-
quinto et al., 2011; Padilla et al., 2015; Zarco-Tejada et al., 2012), and 
also woody crops as olive or grapevine (Calderón et al., 2015; Caruso 
et al., 2019; Zarco-Tejada et al., 2005). Among the VIs, the normalized 
difference vegetation index (NDVI) is probably the most commonly used 
to estimate biomass production, plant vigor, stress levels, yield, and 
even as a proxy to photosynthesis (Fortes et al., 2015, 2014; Gamon 
et al., 2015; Steltzer and Welker, 2006; Virlet et al., 2015). UAVs HTPP 
technology can overcome some of the previous spatial and temporal 
limitations intrinsic to the traditional leaf-level physiologic measure-
ments. However, there are still information gaps regarding the rela-
tionship between the data acquired through plant-truth eco-physiologic 
techniques and high-throughput UAV phenotyping. Therefore, further 
integrative approaches are required to improve our understanding of the 
different genotypes’ performance at real field conditions (Araus et al., 
2018; Gago et al., 2015). 

For instance, leaf gas-exchange parameters as net CO2 assimilation 
rate (AN), stomatal conductance (gs) and their ratio, known as intrinsic 
water use efficiency (WUEi, as AN/gs), are widely used as dynamic ref-
erences for plant performance, physiological stress status, growth dy-
namics and fruit production, and have been related to aerial remote 
sensing data (Araus et al., 2018; Flexas and Medrano, 2002; Gago et al., 
2017; Zarco-Tejada et al., 2016). Also, carbon isotope composition in 
leaf tissues (δ13C) has been defined as an integrative physiological stress 
and WUE indicator (Dhanapal et al., 2015; Farquhar and Richards, 
1984), providing information at different levels and time scales (Fla-
nagan and Farquhar, 2014; Tambussi et al., 2007). Despite the corre-
lation between δ13C and WUEi is widely defined in literature, their 
relationship may be affected by the interaction between environment 
and genotypic variability (Condon, 2004). Although both leaf 
gas-exchange traits and δ13C provide highly valuable information to 
evaluate crop breeding performance, their measurement is time 
consuming and economically expensive when screening a large number 
of plants. Additionally, both are mostly focused at leaf rather than 
plant-level, limiting a wide overview of the crop physiology, and are 
difficult to implement in field trials at which, added to large plant 
numbers, parameters should be measured within a narrow timescale 
and/or in a periodic way along the season (Araus and Cairns, 2014; Gago 
et al., 2015). 

Tomato (Solanum lycopersicum L.) is one of the most produced veg-
etables worldwide and its production has been almost doubled in the last 
20 years, from 1000 million to 1900 million tones (FAO, 2021). Despite 
tomato crop is widely distributed and adapted to an important range of 
climates (Cuartero and Fernández-Muñoz, 1999), it is mainly cultivated 
in temperate regions, particularly the Mediterranean basin. At 
open-field, tomato is a spring-summer high water-demanding crop, 
requiring more than 3 L per plant and day at maturity (Harmanto et al., 
2005). Considering the predicted climate change scenario, it becomes 
essential to explore the tomato genotypic variability to find the most 
resilient genotypes under stress conditions, becoming valuable genetic 
resources to improve WUE minimizing reductions in fruit production 
and quality under harsh conditions. In this regard, tomato crop is a 
notorious target for improvement given its worldwide importance and 
given it has become the model species for fleshy fruit corps (Giovannoni, 
2006; Klee and Giovannoni, 2011; The Tomato Genome Consortium, 
2012). 

Within tomato, most drought-resilient genotypes have been 
described among local landraces in the Mediterranean basin, due to their 
selection over centuries under Mediterranean summer conditions (Bota 
et al., 2014; Guida et al., 2017; Ochogavía et al., 2011; Patanè et al., 
2016). Among those, several long shelf-life (LSL) landraces have 
improved drought tolerance as compared to modern genotypes, and 
some of their adaptive mechanisms allowing to increase WUE have 
already been described (Conesa et al., 2020; Fullana-Pericàs et al., 2019; 
Galmés et al., 2013, 2011; Guida et al., 2017; Tranchida-Lombardo 
et al., 2018). The LSL phenotype, characterized by an extended fruit 
post-harvest conservation, exists in several West-Mediterranean land-
races like the ‘de Ramellet’ tomato from the Balearic Islands (Bota et al., 
2014; Conesa et al., 2014), the ‘de Penjar’ tomato from the Eastern 
Iberian Peninsula (Casals et al., 2012), and in some Italian (Sacco et al., 
2017; Sinesio et al., 2007) and Greek landraces (Terzopoulos and Bebeli, 
2010) (extended review of LSL landraces distribution and traits can be 
found in Conesa et al., 2020). 

Previous studies used remote sensing and HTPP in tomato to increase 
phenotyping precision and detect early effects of abiotic stresses, sug-
gesting their implementation in large collections (Daniel et al., 2016; 
Janni et al., 2019; Johansen et al., 2020, 2019; Ramos-Infante et al., 
2019; Vuong et al., 2020). In this study, the physiologic and agronomic 
performance of 91 tomato genotypes under well-watered and deficit 
irrigation conditions was assessed using high-throughput UAV pheno-
typing technologies, and it was validated by comparing with conven-
tional leaf-level physiologic measurements at plant level. The screened 
genotypes included 68 Western-Mediterranean LSL landraces, and 23 
non-LSL landraces and modern inbreeds of very diverse origin and fruit 
types; most with evidence for improved tolerance to open-field summer 
cultivation conditions. We hypothesized a differential genotype perfor-
mance regarding productivity and drought adaptation that should 
emerge at canopy and leaf levels. Thus, our objectives were: (1) to assess 
the use of remote sensing measurements to physiologically and agro-
nomically phenotype a large and variable tomato collection and its 
response to water deficit, and (2) to investigate if the relationships be-
tween remote sensing and leaf-level physiologic measurements and 
agronomic traits are different depending on the tomato genotype or 
group. 

2. Material and methods 

2.1. Plant material 

Ninety-one tomato genotypes (Solanum lycopersicum L.) were evalu-
ated in this study. Two genotype groups were stablished, namely control 
genotypes (CON, 23 genotypes) and long shelf-life landraces (LSL, 68 
genotypes). The CON group included non-LSL landraces from the Med-
iterranean basin and the M82 and OH8245 genotypes, which were 
included as two non-Mediterranean control genotypes. The LSL group 
included genotypes from different Western-Mediterranean regions, 
covering most of the variability. Genotype codes and seed providers are 
shown in Table S1. A sample of genotype variability regarding leaf and 
fruit morphology is shown in Fig. S1. 

Seeds were germinated under greenhouse conditions in plastic trays 
filled with peat-based substrate. In order to ensure seed germination and 
avoid the spread of fungal and virus diseases, seeds were treated ac-
cording to the procedure described in Fullana-Pericàs et al. (2019). 

2.2. Experimental design and field conditions 

The experiment was performed at a commercial tomato field in 
Ariany (Mallorca, Balearic Islands, latitude 39º38′N, longitude 3º08′E, 
altitude 79 m a.s.l.) (Fig. 1a). Following commercial procedures, field 
soil was fumigated at a rate of 300 L ha− 1 with 50% metam sodium 
anhydrous (50% p/v) and enriched with 250 kg ha− 1 of a granulated 
fertilizer (composition of 12% of total N, 8% of P2O5 and 16% of K2O) 
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prior transplantation. Field soil was clay and had an electric conduc-
tivity of 0.55 mS cm− 1, a pH of 8.4. Soil analyses performed before plant 
transplantation showed low heterogeneity in the main soil parameters 
(not shown). Outdoor plant beds were 80 m long and 30 cm width, 
distributed in two blocks separated by 6 m. Plants were irrigated by a 
black plastic-covered dripping system (AzudPro, 0.33 m emitter spacing, 
1 mm thickness, 2.15 L h− 1 at 100 kPa). Within each block, 5 plants of 
each genotype were randomly planted one month after germination 
with a separation of 0.8 m within lines. To avoid differences due to 
management plants were grown freely, without sustain structures and 
with no pruning all over the experiment. Pests and weeds were treated 
following typical commercial practices. 

Monthly average temperature (in ºC) and relative air humidity (%) 
over the experiment were 24.1 and 60 in June, 25.8 and 69 in July, 26.2 
and 70 in August, and 20.6 and 76 in September. No rainfall was 
recorded in June, while 6.0 mm, 8.3 mm and 19.0 mm were registered 
in July, August, and September, respectively. 

2.3. Irrigation treatments 

Two treatments were stablished, corresponding to each block. Both 
were irrigated covering the daily crop evapotranspiration (ETC) during 
the first month after field transplantation. Afterwards, one block main-
tained the irrigation covering the daily ETC (well-watered treatment, 
WW), while in the other block the irrigation was stopped (water deficit 
treatment, WD). Thus, over all the cultivation period, WW treatment 
received 606 mm and WD treatment 215 mm and thus, only ~40% of 
ETc was covered in WD treatment over the experiment (Fig S2, 
Table S2). 

Weekly reference evapotranspiration was calculated according to 
FAO-56 (Testa et al., 2011) using data obtained by two nearby weather 
stations. Crop evapotranspiration (ETc) was obtained as the product of 
ETo and the crop coefficient (Kc) at each growth stage (Allen et al., 
2006). The used Kc were: 0.6 for initial, 0.9 for medium and 1.15 for 
mature and final stages (Table S2). See Fullana-Pericàs et al. (2019) for 
more details. 

2.4. Leaf gas-exchange and chlorophyll fluorescence 

Leaf gas-exchange and chlorophyll a fluorescence were measured 50 
days after field transplantation (20 days after WD treatment application) 
simultaneously with an open infrared gas-exchange analyzer system 
equipped with a leaf chamber fluorometer (Li-6400–40, Li-Cor Inc., 
USA). Along the measurements, the vapor pressure deficit (VPD) ranged 
between 1.1 kPa and 2.8 kPa, with a mean of 2.1 kPa. Measurements 
were performed from 09:00–14:00 during eight days. 

Environmental conditions in the leaf chamber consisted of a photo-
synthetic photon flux density of 1500 μmol m–2 s–1 (with 10% blue 
light), and a leaf temperature of 32 ◦C. Measurements were performed 
after inducing steady-state photosynthesis for at least 5 min at an 
ambient CO2 concentration (Ca) of 400 μmol CO2 m− 2 s− 1. 

The quantum efficiency of the photosystem II (PSII)-driven electron 
transport was determined using the Eq. (1): 

ΦPSII =
F′

M − Fs

F′
M

(1) 

where Fs is the steady-state fluorescence in the light (PPFD 1500 
μmol photon m–2 s–1) and F′

M the maximum fluorescence obtained with 
a light-saturating pulse (8500 μmol photon m–2 s–1) (Genty et al., 1989). 
As ΦPSII represents the number of electrons transferred per photon 
absorbed by PSII, the rate of electron transport (ETR) can be calculated 
as (2):  

ETR=ΦPSII⋅PPFD⋅α⋅β                                                                     (2) 

where α is the leaf absorbance, and β is the distribution of absorbed 
energy between the two photosystems. The values of α and β were ob-
tained from Fullana-Pericàs et al. (2017). 

2.5. Leaf δ13C isotope composition 

Leaf carbon isotope composition (δ13C) was determined from a 
young fully expanded leaf per plant replicate. Leaves were dried at 60 ºC 
until constant weight (ca. 72 h), ground to fine powder and sampled for 
analysis. Samples were combusted in an elemental analyzer (Thermo 

Fig. 1. Images of a) the location of the study (blue square delimits the well-watered treatment and yellow square the water deficit treatment; red crosses indicate the 
location of the ground control points in the field), b) the UAV (FV8, Atyges, Malaga, Spain) and c) the camera used to obtain the multispectral images (Parrot Sequoia 
sensor, Parrot SA, Paris, France). 
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Flash EA 1112 Series, Bremen, Germany), and CO2 and N2 were directly 
injected into a continuous-flow isotope ratio mass spectrometer 
(Thermo-Finnigan Delta XP, Bremen, Germany) for isotope analysis. 
Peach leaf standards (NIST 1547) were run every six samples. The 
standard deviation of the analysis was below 0.1‰. Results for δ13C are 
presented as δ vs. PDB. 

2.6. Fruit production and quality measurements 

Fruit production was measured at 5 different times, depending on the 
ripening stage of each genotype. Thus, five different harvests were 
performed, at 79, 92, 96, 107 and 114 days after field transplantation. In 
each harvest, only red-ripe fruits (i.e., >90% turned, non-green color, 
either red or yellow depending on the genotype) were harvested, for any 
plant of any genotype and treatment. Data shown corresponds to the 
sum of the five harvests, which was always scored in a per-plant fashion. 
See Fullana-Pericàs et al. (2019) for more details. For fruit quality, a 
digital refractometer and electrical conductimeter (PAL-BXACID F5, 
Atago, Tokyo, Japan) was used to measure the total soluble solids (TSS) 
and the acidity in 8 healthy fruits per plant. 

2.7. Aerial image analysis 

The images of the study were acquired using an unmanned aerial 
vehicle (UAV) (FV8, Atyges, Malaga, Spain) (Fig. 1b). The UAV was 
controlled by an autopilot for autonomous flying (AP04, UAV Naviga-
tion, Madrid, Spain) and followed a flight plan using waypoints to ac-
quire imagery from all study field. Aerial measurements were performed 
65 days after field transplantation and were performed during the solar 
noon to avoid plant shadows that could hinder the image analysis. 

The UAV was equipped with a Parrot Sequoia sensor (Parrot SA, 
Paris, France). The Parrot Sequoia sensor imaged with one 16 megapixel 
rolling shutter RGB camera at 4608 × 3456 pixel resolution and four 1.5 
megapixel global-shutter single band cameras imaging at 1280 × 960 
pixel resolution in green (550 nm), red (660 nm), red-edge (735 nm) 
and near infrared (790 nm) spectral bands. Sensors were calibrated by a 
reflectance panel provided by the manufacturer just before the flight in 
the takeoff site. This equipment includes a light sensor placed in the top 
of the UAV that measures the incoming sun radiation during the flight 
and corrects the reflectance data from the 4 sensors by the fluctuating 
irradiance. The image resolution (ground pixel size) was of 1.65 cm/ 
pixel at typical established flight altitude of 15 m above the terrain. 

The normalized difference vegetation index (NDVI) was calculated as 
in Rouse et al. (1974): 

NDVI =
NIR − RED
NIR + RED

(3) 

Using the same multispectral bands, the simple ratio index (SR) was 
calculated as: 

SR =
NIR
RED

(4) 

The green normalized difference vegetation index (GNDVI) was 
calculated using the green band (500–550 mm) as: 

GNDVI =
NIR − GREEN
NIR + GREEN

(5) 

Canopy projected area (CPA) was measured using a 16 mm lens RGB 
camera (Alpha 5000, Sony, Tokyo, Japan) on board measuring the area 
covered by each plant. The field of view (FOV) was 25.5º, which 
delivered high-RGB image resolution (ground pixel size) of 0.86 cm/ 
pixel at typical established flight altitude of 30 m above the terrain. 
Image post-processing was carried out using Pix4DPro (ver. 3.3.29, 
Pix4D, Lausanne, Switzerland). A total of 25 ground control points 
(GCPs) were used for geo-referencing of the images using this software. 
All GCPs were build covering a 20 × 10 cm steel plate with aluminum 

foil to ease its visualization in images. 
Error was assessed using the root-mean-square error (RMSE) of GCPs 

with values < 0.05 m. Obtained maps were mounted in ArcMap module 
of ArcGIS (version 10.3.1, ESRI Inc., USA), where individual plant shape 
was manually extracted. Following this, the different spectral bands 
were extracted as a mean of the selected region, and multispectral 
indices were calculated according to the previous formulas. Similarly, 
CPA was extracted using the individual shapes. 

2.8. Statistical analyses 

One-way ANOVA was performed in all measured parameters to 
reveal differences between treatments or within treatments for the ge-
notype groups (P-value < 0.05 after Duncan post-hoc test). Pearson’s 
correlations (r) were calculated to determine the relationships among 
the studied parameters. ANCOVA analysis was performed to evaluate 
differences in intercept and slopes between different regression ana-
lyses. All statistical analyses were performed using R software (ver. 
3.2.2.; R Core Team, Vienna, Austria). 

3. Results 

3.1. Variability in leaf-level physiologic parameters and correlations 
among them 

Under well-watered (WW) conditions, there were no differences in 
the net CO2 assimilation rate (AN) and stomatal conductance (gs) be-
tween control (CON) and long shelf-life (LSL) genotypes (Table 1). Both 
CON and LSL had lower AN and gs and higher intrinsic water-use effi-
ciency (WUEi) under water deficit (WD) as compared to WW. However, 
under WD, average values of LSL for AN and gs were ~10% and ~25%, 
respectively, lower than those of CON. Regarding WUEi, LSL presented 
lower average values than CON under WW but higher under WD. Leaf 
carbon isotope composition (δ13C) values were ~5% higher under the 
WD than under WW conditions, having the LSL group higher δ13C 
average values than CON regardless of the treatment (Table 1). 

Concerning the correlations among leaf physiologic measurements, 
AN and gs showed a positive relationship when considering all data, 
having CON and LSL a similar behavior when considered separately 
(Fig. 2a). The electron transport rate (ETR) to net CO2 assimilation rate 
ratio (ETR/AN; a physiological indicator of stress) was negatively 
correlated to gs (Fig. 2b). Similarly, a negative correlation was found 
between WUEi and gs (Fig. 2c). All these relationships were also sig-
nificant when considering CON and LSL separately, but ANCOVA anal-
ysis did not reveal any difference between such groups in the slope or 
intercept (P-value > 0.05). 

A negative correlation was observed between δ13C and both AN and 
gs (Fig. 2d,e), with differences between CON and LSL regressions. 
ANCOVA analysis revealed that LSL had higher AN and gs than CON at 
low δ13C values. On the contrary, there was a positive relationship be-
tween δ13C and WUEi when considering all data, although this rela-
tionship was only significant for LSL when considering genotype groups 
separately (Fig. 2f). 

3.2. Variability in remote sensing parameters 

The normalized difference vegetation index (NDVI) and the canopy 
projected area (CPA) showed similar trends in response to water treat-
ments among genotype groups, having LSL near 5% higher NDVI and 
30% CPA values than CON regardless of the treatment (Table 1). Both 
genotype groups reduced their NDVI and CPA under WD. A significant 
positive correlation was found between both parameters (r = 0.59; P- 
value < 0.001, Fig. S3). 
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Table 1 
Differences in net CO2 assimilation rate (AN), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), carbon isotope composition (δ13C), normalized 
difference vegetation index (NDVI) and canopy projected area (CPA) for the different control (CON) and long shelf-life (LSL) genotype groups under well-watered 
(WW) and water deficit (WD) conditions. Data are means ± S.E (n = 23 for CON and n = 68 for LSL). Leaf gas-exchange measurements were performed under 
saturating light conditions (PAR = 1500 μmol m− 2s− 1). Letters denote significant differences between groups within treatments and asterisks between treatments for 
each group by one-way ANOVA after Duncan post-hoc test (P-value < 0.05).   

AN gs WUEi δ13C NDVI CPA  

µmol CO2 m− 2s− 1 mol H2O m− 2s− 1 µmol CO2 mol− 1 H2O ‰  m2 plant− 1 

WW       
CON 24.53 ± 0.67a * 0.55 ± 0.03a * 53.59 ± 2.53a * -28.56 ± 0.01b * 0.75 ± 0.01b * 0.97 ± 0.01b * 
LSL 25.21 ± 0.26a * 0.56 ± 0.01a * 48.12 ± 0.74b * -27.61 ± 0.05a * 0.78 ± 0.01a * 1.33 ± 0.01a * 
WD       
CON 18.54 ± 0.80a 0.31 ± 0.02a 67.58 ± 2.95b -27.49 ± 0.13b 0.68 ± 0.01b 0.72 ± 0.01b 

LSL 16.54 ± 0.41b 0.23 ± 0.01b 79.74 ± 1.75a -26.32 ± 0.06a 0.72 ± 0.01a 1.04 ± 0.01a  

Fig. 2. Relationship between stomatal conductance (gs) and a) net CO2 assimilation rate (AN), b) electron transport rate (ETR) to net CO2 assimilation rate ratio 
(ETR/AN) and c) intrinsic water-use efficiency (WUEi); and between leaf carbon isotope composition (δ13C) and d) net CO2 assimilation rate (AN), e) stomatal 
conductance (gs) and f) intrinsic water-use efficiency (WUEi). Dots refer to genotype mean (n = 3–5). Black dots refer to control (CON) and white dots to long shelf- 
life (LSL) genotypes. Regression lines are shown when significant. In this case dotted black line represents the regression analysis considering all genotypes and 
treatments, black line the regression analysis considering only CON and red line considering only LSL genotypes. Pearson’s correlation coefficient (r) is indicated, and 
asterisks mean significance level at * P ≤ 0.05, * * P ≤ 0.01 or * **P ≤ 0.001; n.s. refers to non-significant. The best fitting model has always been used and, contrary 
to the other relationships shown in the study, a) and b) better fit with non-linear models, given the “saturating” nature of such correlations. 
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3.3. Relationships between leaf-level physiologic and remote sensing 
measurements 

The information obtained through HTPP employing the UAV was 
compared with the leaf-level physiologic measurements in order to 
assess their reliability as a high-throughput substitute of plant-level 

measurements. Contrasting results were obtained when examining the 
relationship between NDVI and CPA with leaf gas-exchange and carbon 
isotope composition (Fig. 3). NDVI was positively correlated with both 
AN and gs, either when considering all genotypes and treatments 
together, and for CON and LSL separately (Fig. 3a,b). Under both water 
treatments, NDVI was negatively correlated with water use efficiency- 

Fig. 3. Relationship between normalized difference visible index (NDVI) and a) net CO2 assimilation rate (AN), b) stomatal conductance (gs), c) intrinsic water-use 
efficiency (WUEi) and d) leaf carbon isotope composition (δ13C); and between canopy projected area (CPA) and e) net CO2 assimilation rate (AN), f) stomatal 
conductance (gs), g) intrinsic water-use efficiency (WUEi), and h) leaf carbon isotope composition (δ13C). Dots refer to genotype mean (n = 3–5). Black dots refer to 
control (CON) and white dots to long shelf-life (LSL) genotypes. Regression lines are shown when significant. In this case, dotted black line represents the regression 
analysis considering all genotypes and treatments, black line the regression analysis considering only CON and red line considering only LSL genotypes. Pearson’s 
correlation coefficient (r) is indicated, and asterisks mean significance level at * P ≤ 0.05, ** P ≤ 0.01 or ***P ≤ 0.001; n.s. refers to non-significant. 
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related traits, considering either WUEi and δ13C, for all genotypes 
together and separately in groups (Fig. 3c,d). For all the relationships 
previously described, ANCOVA analyses revealed differences between 
CON and LSL regressions in their intercepts (P-value < 0.05) but not in 
their slopes. 

In general, CPA showed weaker or non-significant relationships with 
the leaf-level physiologic parameters as compared to the NDVI. Signif-
icant correlations with CPA were only observed for AN, gs and WUEi 
when considering all genotypes together (Fig. 3e,f,g). For CON geno-
types, CPA correlated with gs and WUEi, while for LSL, significant cor-
relations were found with all leaf-level parameters (Fig. 3e-h). For the 
correlations with gs and WUEi, where both CON and LSL regressions 
were significant, ANCOVA analysis revealed differences in their in-
tercepts (P-value < 0.05) but not in their slopes. 

Other vegetation indexes were obtained from UAV measurements, 
such as the simple ratio index (SR) and the green normalized difference 
vegetation index (GNDVI). When considering all genotypes and treat-
ments, both SR and GNDVI correlated with all ground-based parameters 
(i.e., AN, gs, WUEi and δ13C; Table 2) showing a similar behavior than the 
previously observed for NDVI. 

3.4. Variability in fruit related traits and the relationship with remote 
sensing parameters 

No differences in fruit production were found between LSL and CON, 
under WW conditions (Table 3). Different to fruit production, there were 
differences in the total soluble solids (TSS) and acidity between LSL and 
CON, with higher values in the former group (~10% for TSS and ~30% 
for acidity). No differences between genotype groups were found for 
fruit related traits under WD conditions. All genotype groups decreased 
their fruit production (~30% and ~20% reduction in CON and LSL, 
respectively) and increased TSS under WD as compared to WW, while 
only CON increased acidity under WD (Table 3). 

The relationships between the UAV remote sensing data and the fruit 
production and quality parameters was further explored. Fruit produc-
tion was positively correlated with NDVI either when considering all 
genotypes and treatments together and considering genotype groups 
separately (Fig. 4a). Similar regression coefficients resulted for fruit 
production when correlating it to SR (Fig. 4b) and to GNDVI (Table S3). 
However, higher correlation coefficients were obtained when fruit 
production was correlated with CPA (Fig. 4c). Despite NDVI and GNDVI 
were correlated with TSS when considering all genotypes and treat-
ments (Fig, 4d, Table S3), the correlation of TSS with SR showed higher 
correlation coefficient and was significant regardless of the genotype 
group (Fig. 4e). On the other hand, correlation between CPA and TSS 
was only significant for LSL genotypes (Fig. 4f). Any of the UAV high- 
throughput parameters was correlated with acidity, except CPA when 
considering only LSL genotypes (Table S3). 

4. Discussion 

The need for efficient and reliable HTPP methodology is claimed as a 
major constraint for genetic crop breeding programs (Araus and 
Kefauver, 2018 and references therein). Despite remote sensing has 
important advantages related to high automation and reproducibility of 
measurements over time, the challenge is still the reliability with com-
mon leaf-level physiologic parameters or fruit related traits (Araus and 
Kefauver, 2018; Rötter et al., 2011; Stylinski et al., 2002; Suárez et al., 
2008). One of the current pitfalls in most of the studies attempting to 
correlate remote sensing with those measurements is that include low 
genetic variability in the screened plant material, which biases the re-
sults of the correlation to genotype-related responses (e.g., Duan et al., 
2019; Fortes et al., 2015; Wu et al., 2008). The current study, which 
contains 797 plants from 91 different tomato genotypes, aims to test the 
usefulness of remote sensing and high-throughput measurements to 
predict plant stress response in open field tomato crops. The relevance of 
the study increases given the worldwide importance of the tomato crop, 
and the ease to transfer results from this model crop to further horti-
cultural, fleshy fruit crops. 

4.1. Leaf-level physiologic differences among genotypes are detected with 
remote sensing measurements 

The differences in physiologic parameters between CON and LSL 
(Table 1) agree with the results reported in previous studies comparing 
drought adapted LSL genotypes with commercial and non-drought- 
adapted genotypes, denoting a different physiologic behavior between 
those groups (Fullana-Pericàs et al., 2019, 2017; Galmés et al., 2013, 
2011; Giorio et al., 2018; Guida et al., 2017; Landi et al., 2017; Patanè 
et al., 2016). In this study, we show that these contrasting performance 
was also observed at whole-plant level, with differences between CON 
and LSL in NDVI and CPA regardless of the treatment (Table 1). 

Under field conditions, multispectral indices have been related to 
leaf biochemical parameters such as chlorophyll content and other 
photosynthetic pigments (Jay et al., 2019; Le Maire et al., 2004; Wu 
et al., 2008; Zarco-Tejada et al., 2013b). In fact, those indices have been 
used to track changes in AN in a processing tomato genotype (Marino 
et al., 2015) and in corn and orange crops (Tan et al., 2013; Zarco-Tejada 
et al., 2016, 2013a). The results of the present study, where drought 
promoted declines in AN and gs which were translated in reductions in 
multispectral indices and CPA (Fig. 3, Table 2), show that remote 
sensing HTPP parameters are an efficient tool to explore drought impact 
over the physiologic performance of a large tomato collection. 

4.2. Tomato groups presented different regressions between leaf-level and 
remote sensing measurements 

The results of the present experiment corroborate the relationship 
between physiologic performance and remote sensing in a large tomato 

Table 2 
Pearson’s correlation coefficients (r) between simple ratio (SR) and green 
normalized difference vegetation index (GNDVI) and ground-based physiologic 
measurements when considering all genotypes and treatments together (All), 
only control genotypes (CON) and only long shelf-life genotypes (LSL). Also, the 
significance level is indicated as: * P-value ≤ 0.05, ** P-value ≤0.01 and *** P- 
value ≤0.001.    

AN gs WUEi δ13C 

SR All 0.65*** 0.68*** -0.61*** -0.3***  
CON 0.67*** 0.73*** -0.59*** -0.35*  
LSL 0.68*** 0.7*** -0.66*** -0.52*** 

GNDVI All 0.58*** 0.58*** -0.51*** -0.17*  
CON 0.62*** 0.7*** -0.58*** -0.31*  
LSL 0.61*** 0.59*** -0.54*** -0.39***  

Table 3 
Differences in fruit production, total soluble solids (TSS) and acidity for the 
different genotype groups under well-watered (WW) and water deficit (WD) 
conditions. Data are means ± S.E (n = 23 for CON and n = 68 for LSL). Letters 
denote significant differences between groups within treatments and asterisks 
between treatments for each group by one-way ANOVA after Duncan post-hoc 
test (P-value < 0.05).   

Fruit production TSS Acidity  

g plant− 1 Brix % citric acid 

WW    
CON 3214.7 ± 265.4a * 4.56 ± 0.19b * 0.80 ± 0.07b * 
LSL 2886.9 ± 152.4a * 5.01 ± 0.07a * 1.07 ± 0.03a 

WD    
CON 2232.6 ± 179.0a 5.92 ± 0.29a 1.08 ± 0.07a 

LSL 2276.4 ± 118.1a 5.88 ± 0.10a 1.10 ± 0.03a  
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collection. Further, ANCOVA analysis revealed different performance of 
CON and LSL genotypes for these relationships, denoting a different 
physiologic behavior detected by remote sensing phenotyping. For the 
same NDVI value, LSL genotypes had lower AN and gs than CON (Fig. 3a, 
b), which in turn lead to larger WUEi (Fig. 3c). The higher WUEi of LSL 
was achieved through a larger reduction in gs as compared to the 
reduction in AN, in accordance with previous reports on tomato land-
races with enhanced drought tolerance (Galmés et al., 2013; Giorio 
et al., 2018; Guida et al., 2017). 

Interestingly, CON under WD had similar δ13C values than LSL under 
WW, denoting the different behavior in WUE between genotype groups 
(Table 1). This contrasting performance explains the differences in the 

relationship of δ13C with leaf gas-exchange parameters between geno-
type groups, having LSL higher AN and gs than CON for the same δ13C 
(Fig. 2d,e), which in turn explains the higher NDVI for LSL genotypes for 
the same δ13C values (Fig. 3d). 

It is worthy to note that no correlation of CPA with δ13C was 
observed for CON, but a negative relationship was found for LSL 
(Fig. 3i). Several studies related CPA with crop physiologic status, 
growth, and leaf transpiration (Enciso et al., 2019; Haboudane et al., 
2004; Mukherjee et al., 2010). Hence, the higher CPA and lower gs of 
LSL as compared to CON under WD indicates that the constrained gs in 
LSL (thus, driving higher WUE) do not impose a detriment in plant 
growth (Table 2). 

Fig. 4. Relationship between fruit production (g plant− 1) and a) normalized difference visible index (NDVI), b) simple ratio (SR) and c) canopy projected area (CPA); 
and between total soluble solids (TSS) and d) normalized difference visible index (NDVI), e) simple ratio (SR) and f) canopy projected area (CPA). Dots refer to 
genotype mean (n = 3–5). Black dots refer to control (CON) and white dots to long shelf-life (LSL) genotypes. Regression lines are shown when significant. In this 
case, dotted black line represents the regression analysis considering all genotypes and treatments, black line the regression analysis considering only CON and red 
line considering only LSL genotypes. Pearson’s correlation coefficient (r) is indicated, and asterisks mean significance level at *P ≤ 0.05, ** P ≤ 0.01 or ***P ≤ 0.001; 
n.s. refers to non-significant. 
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Aside of the vegetation indices used in this study, plant’s tempera-
ture directly collected by UAV thermal imagery can be linked to plant 
water stress by stomata performance and the leaf energy balance (Berni 
et al., 2009; Gago et al., 2017, 2015). Despite the relationship between 
leaf temperature and leaf physiology has been explored in tomato 
(Bhattarai et al., 2021; Camejo et al., 2005; Morales et al., 2003), there is 
almost no information in literature regarding the use of thermal imagery 
to monitor changes in physiologic parameters in this crop. Hence, due to 
the reduced resolution of the microbolometer thermal sensors and its 
cost, its employment is reduced because of the difficulties to perform 
adequate high-resolution thermal maps for extended field-trials of her-
baceous species that have a reduced canopy compared to trees and vines. 

4.3. Fruit production and quality can also be approached using remote 
sensing measurements in large tomato collections 

Fruit production reduction under WD conditions was ~15% lower in 
LSL than in CON genotypes (Table 3), and the changes in fruit produc-
tion correlated with remote sensing measurements (Fig. 4a-c). Johansen 
et al. (2020) used RGB and multispectral indices to develop biomass and 
fruit production prediction models in a tomato wild species. Other 
studies have also described correlations between NDVI and tomato fruit 
production with higher regression coefficients than that obtained in the 
present study (Campillo et al., 2019; Fortes et al., 2014; Ihuoma and 
Madramootoo, 2019). As a main difference, previous studies considered 
only a single genotype in their trials. Our results show that the inclusion 
of large genotypic variability in phenotyping trials prevents the exis-
tence of high correlation coefficients between remote sensing and 
leaf-level parameters, hindering the obtention of reliable models that 
could increase HTPP accuracy in tomato crop. 

Stronger correlations for fruit production were found with CPA than 
with multispectral indices (Fig. 4c). The weak correlations between fruit 
production and multispectral indices (more linked with physiologic 
traits, Fig. 3) were mostly explained by the low correlation coefficients 
observed among physiologic and agronomic parameters (Fig. S4). 
Alternatively, those tomato genotypes with enhanced plant growth and 
more open canopies (i.e., more exposed zenithally) can sustain higher 
fruit production. A large intra- and inter-genotypic variability in agro-
nomic, morphologic and quality traits has been described in Mediter-
ranean LSL tomato landraces (Bota et al., 2014; Cebolla-Cornejo et al., 
2013; Figàs et al., 2018). In fact, higher correlation coefficients in the 
relationship between CPA and fruit production were found for CON as 
compared to LSL (Fig. 4c), indicating that the large variability included 
in the LSL group was not only agronomical but also in growth behavior. 

Beyond the relationship with fruit production, the present study in-
cludes, at the best of our knowledge, the first attempt to relate whole- 
plant remote sensing measurements with tomato fruit quality. In to-
mato, previous studies related fruit quality with colorimetric and 
hyperspectral images measured directly on the tomato fruit (Bello et al., 
2020; Ramos-Infante et al., 2019). In grapevines and fruit orchards, 
changes in NDVI plant canopy have been explored as a solution to 
monitor fruit maturation and estimate fruit quality, with promising re-
sults (Meyers et al., 2020; Overbeck et al., 2017; Stagakis et al., 2012; 
Uribeetxebarria et al., 2019). It has been largely described that tomato 
plants under water deficit conditions usually present an enhanced fruit 
quality (i.e., higher TSS and acidity) (reviewed in Beckles, 2012 and 
Ripoll et al., 2014). In our study, fruit quality traits correlated with the 
main leaf-level physiologic parameters (Fig. S5) and thus, relationships 
between fruit quality and multispectral indices should be expected 
(Fig. 4). Consequently, our results suggest that the use of UAVs equipped 
with multispectral cameras can be used to monitor both the plant 
physiologic performance and the fruit TSS in open-field tomato trials. 

4.4. Concluding remarks 

This research provides crucial information for future HTPP trials, 

identifying traits and relationships enabling to screen high genotypic 
variability and its response to WD, as a major constraint for fruit pro-
duction and fruit quality prediction models from remote sensing data in 
tomato crop, which could be extended to similar crops. Our results show 
that leaf physiology and fruit quality traits were better related with 
multispectral indices as NDVI, GNDVI and SR; whereas fruit production 
was closely related to CPA. Nevertheless, different correlations were 
found depending on the genotype group observed. Consequently, UAVs 
measurements should be mainly considered in phenotyping studies 
including genotypes with similar physiologic behavior and response to 
water deficit. In cases where this is not possible or unknown, our out-
comes suggest that remote sensing must be combined with plant-based 
measurements as leaf gas-exchange or leaf δ13C to identify those geno-
types with different physiologic behavior, allowing to increase HTPP 
accuracy. 
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Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., Sousa, J., 2017. 
Hyperspectral imaging: a review on UAV-based sensors, data processing and 
applications for agriculture and forestry. Remote Sens. 9, 1110. https://doi.org/ 
10.3390/rs9111110. 

Allen, R., Pereira, L.S., Raes, D., Smith, M., 2006. Evapotranspiración del cultivo: Guias 
para la determinación de los requerimientos de agua de los cultivos. FAO:Estudios 
FAO Riego y Drenaje 56,, Rome. https://doi.org/10.1590/1983- 
40632015v4529143.  

Araus, J.L., Cairns, J.E., 2014. Field high-throughput phenotyping: the new crop 
breeding frontier. Trends Plant Sci. 19, 52–61. https://doi.org/10.1016/j. 
tplants.2013.09.008. 

Araus, J.L., Kefauver, S.C., 2018. Breeding to adapt agriculture to climate change: 
affordable phenotyping solutions. Curr. Opin. Plant Biol. 45, 237–247. https://doi. 
org/10.1016/j.pbi.2018.05.003. 

Araus, J.L., Kefauver, S.C., Zaman-Allah, M., Olsen, M.S., Cairns, J.E., 2018. Translating 
high-throughput phenotyping into genetic gain. Trends Plant Sci. 23, 451–466. 
https://doi.org/10.1016/j.tplants.2018.02.001. 

Babar, M.A., van Ginkel, M., Klatt, A.R., Prasad, B., Reynolds, M.P., 2006. The potential 
of using spectral reflectance indices to estimate yield in wheat grown under reduced 
irrigation. Euphytica 150, 155–172. https://doi.org/10.1007/s10681-006-9104-9. 

Battisti, D.S., Naylor, R.L., 2009. Historical warnings of future food insecurity with 
unprecedented seasonal heat. Sci. (80-. ) 323, 240–244. https://doi.org/10.1126/ 
science.1164363. 

Beckles, D.M., 2012. Factors affecting the postharvest soluble solids and sugar content of 
tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 63, 129–140. 
https://doi.org/10.1016/j.postharvbio.2011.05.016. 
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Patanè, C., Rouphael, Y., Albrizio, R., Giorio, P., 2017. Agronomical, physiological 
and fruit quality responses of two Italian long-storage tomato landraces under rain- 
fed and full irrigation conditions. Agric. Water Manag. 180, 126–135. https://doi. 
org/10.1016/j.agwat.2016.11.004. 

Haboudane, D., Miller, J.R., Pattey, E., Zarco-Tejada, P.J., Strachan, I.B., 2004. 
Hyperspectral vegetation indices and novel algorithms for predicting green LAI of 
crop canopies: Modeling and validation in the context of precision agriculture. 
Remote Sens. Environ. 90, 337–352. https://doi.org/10.1016/j.rse.2003.12.013. 

Harmanto, Salokhe, Babel, V.M., Tantau, M.S., H.J, 2005. Water requirement of drip 
irrigated tomatoes grown in greenhouse in tropical environment. Agric. Water 
Manag. 71, 225–242. https://doi.org/10.1016/j.agwat.2004.09.003. 

Hertig, E., Tramblay, Y., 2017. Regional downscaling of Mediterranean droughts under 
past and future climatic conditions. Glob. Planet. Change 151, 36–48. https://doi. 
org/10.1016/j.gloplacha.2016.10.015. 

Ihuoma, S.O., Madramootoo, C.A., 2019. Sensitivity of spectral vegetation indices for 
monitoring water stress in tomato plants. Comput. Electron. Agric. 163, 104860 
https://doi.org/10.1016/j.compag.2019.104860. 

Janni, M., Coppede, N., Bettelli, M., Briglia, N., Petrozza, A., Summerer, S., Vurro, F., 
Danzi, D., Cellini, F., Marmiroli, N., Pignone, D., Iannotta, S., Zappettini, A., 2019. In 
vivo phenotyping for the early detection of drought stress in tomato. Plant 
Phenomics 2019, 2019. https://doi.org/10.34133/2019/6168209. 

Jay, S., Baret, F., Dutartre, D., Malatesta, G., Héno, S., Comar, A., Weiss, M., Maupas, F., 
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Conesa, M.À., Galmés, J., Bota, J., Francis, D., Medrano, H., Martorell, A., Cifre, J., 
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