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Abstract:

By collecting data at spatial and temporal scales that are inaccessible to
satellite and field observation, UAVs (unmanned aerial vehicles) are
revolutionizing a number of scientific and management disciplines. UAVs
may be particularly valuable for precision agricultural applications,
offering strong potential to improve the efficiency of water, nutrient, and
disease management. However, some authors have suggested that the
UAV industry has over-hyped the potential value of this technology for
agriculture, given that it is difficult for non-specialists to operate UAVs,
as well as to process and interpret the resulting data. Here, we analyze
the barriers to applying UAVs for precision agriculture, which range from
regulatory issues to technical requirements. We then evaluate how new
developments in the nano- and micro-UAVs (NAVs and MAVs,
respectively) markets may help to overcome these barriers. Among the
potential breakthroughs we identify is the ability of NAV/MAV platforms
to directly quantify plant traits using methods (e.g. object-oriented
classification) that require less image calibration and interpretation than
spectral-index based approaches. We suggest that this potential, when
combined with steady improvements in sensor miniaturization, flight
precision, and autonomy, as well as cloud-based image processing, will
make UAVs a tool that achieves much broader adoption by agricultural
managers in the near future. If this wider uptake is realized, then UAVs
have real potential to improve agriculture’s resource use efficiency.
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Abstract
By collecting data at spatial and temporal scales that are inaccessible to satellite

and field observation, UAVs (unmanned aerial vehicles) are revolutionizing a
number of scientific and management disciplines. UAVs may be particularly
valuable for precision agricultural applications, offering strong potential to
improve the efficiency of water, nutrient, and disease management. However,
some authors have suggested that the UAV industry has over-hyped the potential
value of this technology for agriculture, given that it is difficult for non-specialists
to operate UAVs, as well as to process and interpret the resulting data. Here, we
analyze the barriers to applying UAVs for precision agriculture, which range from
regulatory issues to technical requirements. We then evaluate how new
developments in the nano- and micro-UAVs (NAVs and MAVs, respectively)
markets may help to overcome these barriers. Among the potential breakthroughs
we identify is the ability of NAV/MAYV platforms to directly quantify plant traits
using methods (e.g. object-oriented classification) that require less image
calibration and interpretation than spectral-index based approaches. We suggest
that this potential, when combined with steady improvements in sensor
miniaturization, flight precision, and autonomy, as well as cloud-based image

processing, will make UAVs a tool that achieves much broader adoption by
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agricultural managers in the near future. If this wider uptake is realized, then

UAVs have real potential to improve agriculture’s resource use efficiency.

Keywords: Phenotyping, remote sensing, UAVs, NAVs, MAVs

The rise of Unmanned Aerial Vehicles

In the last 10 years, Unmanned Aerial Vehicles (hereafter UAVs) have
revolutionized several industrial applications and scientific disciplines, and even
more rapid growth in the use of UAVs is anticipated over the next decade (Zaloga
et al. 2015). For plant ecophysiology and precision agriculture research, these
advances have opened new possibilities by enabling more frequent, highly detailed
observations to be collected over large areas, thereby allowing individual plants
within entire fields to be measured several times per day at sub-centimeter
resolution (Gago et al. 2015).

This capability makes UAVs particularly useful for precision agricultural
management, by offering the ability to more rapidly identify management
problems and target interventions, such as the detection and treatment of pests and
diseases and the application of fertilizer and irrigation treatments (Sankaran et al.
2015; Lopez-Lopez et al. 2016). Improving water management is a particular
concern for agriculture, given the large share of production that occurs in semi-
arid regions, where limited water availability and frequent droughts dramatically
constrain agricultural productivity. These concerns are made more urgent by
climate change, which is expected to exacerbate hydrological uncertainty (IPCC,
2013). The long-heralded "Blue Revolution" promotes the idea that agriculture can
dramatically increase its "crop per drop" by leveraging new water management
technologies. However, improving water use efficiency has been challenging, and
will likely require considerable use of UAV technologies to make significant
progress (Beer et al. 2009; Gago et al. 2014).

A wide variety of UAV platforms, including multi-copter and fixed-wing
types, are available that can carry a range of sensors (RGB, multi-spectral,

hyperspectral, and thermal cameras), which can be analysed to provide important
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information on crop status and health (Lelong et al. 2008; Berni et al. 2009; Zarco-
Tejada et al. 2012; Diaz-Varela et al. 2015; Gago et al. 2017). However, these
potential benefits may not be fully realized due to public concerns about the
threats to safety and privacy posed by UAVs (Freeman and Freeland, 2015).
Another barrier to the uptake of UAVs in agricultural management is the methods
and expertise that are required to derive crop-relevant information from UAV-
collected data. These challenges include complex aerial image processing and
calibration requirements, and the complexity of interpreting the resulting bio-
physical data (Berni et al. 2009; Zarco-Tejada et al. 2012; Gago et al. 2015;
Freeman and Freeland, 2015). These combined factors represent significant
hurdles that serve to limit the practical use of UAVs to researchers and specialized
companies rather than lay users. Freeman and Freeland (2015) suggested that the
UAYV industry in the USA over-hyped the agricultural uses of UAVs, most likely
in an effort to overcome negative social and political perceptions and to facilitate
funding support. However, these same authors envisage that within the near-
future, that further developments will make it possible for there to be a genuine
increase in farm-based user of UAVs.

In recent years, numerous studies have reviewed the application of UAVs
to a variety of fields, including ecology and plant ecophysiology (Gago et al.
2015; Sankaran et al. 2015; Padua et al. 2017; Garret and Anderson, 2018). In this
paper, we build on these previous efforts by reviewing the emergence of UAVs in
the scientific literature and their agricultural applications, focusing particularly on
the most recent advances and the obstacles that have prevented the use of these
technologies by farm managers and other non-specialists. We hypothesize that the
use of "very small" UAVs —called NAVs (nano-UAVs) and MAVs (micro-
UAVs)— could boost the rapid adoption of this technology by the broader
agricultural community in the coming years. Finally, we discuss the new
challenges and opportunities posed by these miniature vehicles for precision

agriculture and water stress assessment.

Big problems, small solutions
Remote sensing has generally been limited to manned aircraft and satellites.
However, UAVs have "changed the rules of the game" by offering new

opportunities and perspectives for data collection (Anderson et al. 2013; Gago et

John Wiley & Sons



oNOULL D WN —

al. 2015). UAVs are generally low cost and can be operated without significant
expertise or training (Anderson and Gaston, 2013; Hassanalian and Abdelkife,
2017).

This affordability and ease of use, both of which are expected to increase in the
coming years (Garret and Anderson, 2018), has led to extensive use of UAVs by
the general public, and in turn prompted increased regulation and concern
regarding UAV-related threats to the safety of manned airspace, public health, and
privacy (Nakamura and Kajikawa, 2018). In the US and EU, for example, it is
necessary to obtain a Remote Pilot Certification to operate UAS for non-hobby use
and other certificates in relationship to the aircraft and the operator, a factor that
might hinder their uptake in agriculture.

Beyond any regulatory constraints, the ability to make use of UAV-collected data
for agricultural applications also remains challenging. First, the large volume of
images that UAVs collect to cover a relatively small area must be processed to
create a single model covering the area of interest, a process which entails the
creation of a 3-D model based on Structure From Motion technology (Westoby et
al. 2012; Fonstad et al. 2013). Larger field sizes or finer spatial resolutions require
concomitant increases in computational requirements and image processing time.
Altogether, the image processing can be time-consuming and typically requires the
use of expensive photogrammetric commercial software. For quantitative
measures of plant status over multiple dates, it is also necessary to radiometrically
calibrate the collected imagery (Berni et al. 2009; Zarco-Tejada et al. 2012; Zhang
and Kovacs, 2012). Furthermore, UAV-derived measurements should be validated
against ground-truth data (i.e. field-collected measurements on the related plant
variables; for review see Gago et al. 2015).

Recent advances in UAV technology may help to mitigate the two
aforementioned barriers to broader UAV use. One of these is the development, of
very small, consumer-grade UAVs, which combine highly precise, autonomous
flight capabilities with high-resolution (and, in some cases, gimbal-stabilized)
imaging. UAVs are classified as “very small” based on military criteria related to
size, flight endurance, and capabilities (Watts et al. 2012), but generally means
UAVs weighing <2 kg. Beneath this weigh threshold very small UAVs are further
sub-divided into nano- (NAVs, <200 g) and micro-UAVs (MAVs, 200-2000g),
following weight criteria proposed by Brooke-Holland (2012). An extensive
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review of current drone classification criteria is provided by Hassanalian and
Abdelkife (2017). As an illustrative example some MAVs and NAVs commercial
models can be seen in Figure 1.

Since the earliest studies of Herwitz et al. (2003a, b), an analysis of the
number of papers reporting UAVs investigations or associated methodologies
published annually since the last 15 years in agriculture and plant sciences in the
Web of Science® database, research using this technology have expanded greatly
both in number and scope. Search was focused into original articles and reviews
within the categories "ecology", "remote sensing", "imaging science photographic
technology", "environmental sciences", "agricultural engineering", "forestry",
"agriculture multidisciplinary" and "plant sciences". Both searches were manually
revised to ensure that papers were directly related with any application in
agriculture or plant sciences. The first search integrating all types of UAVs
retrieved a total of 461 papers, meanwhile about MAVs or NAVs there was just 2
papers that accomplished our criteria (Fig. 1). Interestingly, from 2009 the number
of papers describing UAVs applications to plant sciences started to grow
exponentially (Fig. 1), probably related with the previous general release of
commercial civilian UAVs by companies as DJI® or Mikrokopter® both funded
in 2006. Intriguingly, only two papers are focused on directly application of very
small drones to agriculture (Roldén et al., 2015; 2016) (Fig. 2).

Beyond personal uses (such as selfies), the small sizes of these aircraft make them
less threatening from a health and safety perspective, which may help to alleviate
the use restrictions established by the national aviation authorities. Indeed, in
February 2018, the European Aviation Safety Agency (EASA) published their
recommendations for new UAS regulations, factoring in these technology
developments. According to these recommendations, UAVs <250 g in weight are
exempted from registration (although must still be operated within acceptable
airspace and safety limits), since they are considered to pose a much lower risk to
public health and manned aviation. Risks related to privacy, security, and data
protection are also limited, given that permissible flight distances are within 50 m

of the pilot (EASA, 2018).

Smartphones and smartdrones?

John Wiley & Sons



oNOULTL D WN -

Most existing articles focused on UAVs in agriculture describe two different
hardware systems in the aerial platform. One system is dedicated to flight and
navigation requirements, while the other is responsible for the capture and storage
of data (Lelong et al. 2008; Zarco-Tejada et al. 2012; Gago et al. 2017). Larger
sensors require UAVs with higher payload capacity. Payload capacity is a function
of power consumption (provided by batteries), engines, and propeller type, which
can in turn require larger airframes and thus heavier weights. A number of UAV-
based precision agricultural studies have used advanced sensors, such as thermal
and hyper-spectral cameras, which have required additional systems for data
control and management that added considerable payload weight (Sugiura et al.
2005; Berni et al. 2009; Zarco-Tejada et al. 2012; Gago et al. 2017).

However, the recent advances in sensor miniaturization (thermal sensors/cameras
<3 g size 20x20x15 mm with 80x60 pixel image resolution, or multi-spectral
cameras < 72 g with size 59x41x28 mm 4608x3456 px resolution and 4 bands)
and considering that NAV and MAVs are intrinsically linked to "smartphones",
which provide the main hardware/software interface and thereby substantially
reduce logistical and systems requirements. Open programming environments
(distributed as Software Development Kits by the UAVs providers) are often
available, making it possible to customize the interface for more advanced uses.
This in turn increases the amount of hardware and software that is compatible with
mobile apps. These not only allow the configuration and establishment of the
UAYV, but also the design of the flight planning, image capture, and image
overlapping required to obtain an accurate DTM. As a result, some of these apps
even allow images acquired during flight to be uploaded directly to cloud
computing facilities, where the imagery is processed into the necessary geo-
referenced mosaics, as well as basic analyses (e.g. foliar area, NDVI values) and
retrieved within minutes after the flight is completed.

It is worth mentioning that the spatial precision of UAV-derived imagery
that relies on the UAV’s GNSS (Global Navigation Satellite System) still has
fairly limited accuracy, primarily due to imprecision in the altitude axis and the
GNSS positioning error. Spatial accuracy can be improved by correcting selected
image coordinates using known ground control points (GCPs), particularly when a
differential positioning (D-GNSS) station is used to correct the GCP coordinates
(Woodget et al. 2014). A recent study employed real-time kinetics (RTK) and
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post-processing kinetics (PPK) with a ground station in real-time to improve
spatial calculations based on both UAV- and satellite data (Fazeli et al. 2016). The
open source program  package for GNSS  positioning  project

(http://www.rtklib.com) makes it possible to adjust the positioning error using a

GNSS station to improve the accuracy of UAV spatial data. This approach could
also be adapted to GSM networks, in order to improve flight precision as well as
obstacle avoidance. Indeed recently, consumer grade UAVs equipment including
RTK (Real-Time Kinematics) have being released, and it is expected that greatly
facilitates the generation of precise georeferenced models.

NAVs and MAVs offer potentially new approaches for UAVs to navigate
their environments via communication with on-the-ground sensors. For instance,
Chakrabarty and Langelaan (2009) proposed a methodology to plan flights while
factoring in atmospheric data related to wind (e.g. intensity, direction, and
updrafts), in order to maximize flights distances and times of small UAVs. The
effectiveness of this methodology requires access to real-time updates from wind
sensors on the ground as well as current atmospheric models.

Beyond improvements in spatial accuracy and flight endurance, feeding
data into UAVs from other ground-based sources can important for other aspects
of precision agriculture. For example, data on incoming solar radiation must be
employed to radiometrically correct multi- and hyper-spectra imagery so that
reliable vegetation metrics can be derived (Sankaran et al. 2015). Similarly, air
temperature, humidity, and other variables collected by nearby meteorological
stations can be combined with UAV-collected thermal imagery to improve energy
balance calculations and thermal stress indices (Monteith and Unsworth, 1990;
Jones, 1999). Additionally, one of the most promising uses of UAVs is their
potential capability to extrapolate ground sensor data into spatially continuous
measurements, which requires accurate calibration of UAV-based data to sensor
data. Real-time communication between ground sensor data and the UAV may
facilitate this capability (Sheng et al. 2010), which is one the main challenges for
future development of UAV technologies.

Flying closer to the target: NAVs and MAVs open new opportunities for precision
agriculture and plant ecophysiology
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In the last decade, several UAV-based agricultural management applications were
proposed, including methods to monitor drought and nutrient stress (Berni et al.
2009; Gonzalez-Dugo et al. 2013; Zaman-Allah et al. 2015; Severtson et al. 2016;
Gago et al., 2017), to treat pests and diseases (Calderon et al. 2013, 2014; Garcia-
Ruiz et al. 2013, Jansen et al. 2014), and to measure productivity (Bendig et al.
2015; Holman et al. 2016; Maresma et al. 2016). Although these methods were
developed for UAV-collected data, they required precise calibration in order to
provide accurate information on plant status. For example, vegetation indices
derived from multi-spectral UAV imagery are sensitive to variations in solar
illumination, therefore the imagery must first be converted into surface reflectance
before analysis, which generally requires calibration against reflectance targets
(Sankaran et al. 2015). After calibration, the values derived from the images have
to be further calibrated against plant-truth measurements, which requires
additional expert knowledge that is usually not possessed by the lay UAV user
(Berni et al. 2009; Gonzalez-Dugo et al. 2013; Gago et al. 2017).

Although calibration is usually required, there are a number of biophysical
parameters that may be measured with less calibration, including certain variables
related to phenology, growth, leaf area, height, and biomass traits, that in turn
correlate with productivity and yields (Swain et al. 2010; Granados et al. 2013;
Diaz-Varela et al. 2015; Torres-Sanchez et al. 2015; Dempewolf et al. 2017; Chen
et al. 2018). By flying closer to the plant, MAVs and NAVs increase the
possibilities for measuring previously unseen variables that are important for
precision agriculture and phenotyping, and in doing so further minimize
calibration requirements. For instance, MAVs and NAVs can fly between vineyard
rows and capture sideways-looking images of the vines (Fig. 3a). The resulting
images can be analyzed using object-based image classification techniques to
directly measure the size and number of grape bunches (Fig. 3b), thereby
providing a direct measurement of yield. Although the efficacy of this approach
requires the development of automated algorithms and substantial computing
resources, it would have little need for spectral calibration, facilitating cloud-
processing applications to obtain an end-product ready for the user as it is already
developed by several private companies generating 3D ortho-models with multi-

spectral vegetation indices.
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For example, crop size will be among the new trait targets that can be
monitored in precision viticulture applications using this new generation of UAVs
(Fig. 3¢). Similarly, such “between-the-row” data and classification methods could
also be used to classify leaves, and thereby estimate leaf area and growth rates for
an entire orchard. Flying very close to the crops will likely revolutionize both the
type and quality of information that can be retrieved from agricultural fields.

Greenhouse crop production is rapidly increasing in Europe (now covering
405,000 ha, including 105,000 ha in South-East Europe), which has been
combined with high-tech farming strategies to greatly increase the yields of some
crops, such as tomato, which has seen 6-fold productivity gains in just a few years
(FAO, 2017). The pioneering work of Roldan et al. (2015) showed how a MAV
(AR.drone 2.0 of Parrot®) could fly inside a greenhouse to collect environmental
data (including air temperature, humidity, CO, concentration and incident light
radiation) and provide a map of greenhouse micro-environmental conditions. The
same authors extended and improved this capability by combining the MAV data
with wireless sensor networks and ground robots (Roldan et al. 2016).

Plant phenotyping within greenhouses is also an important topic, but has
not yet been widely explored beyond the use of cameras in a permanent position or
expensive automated robotic systems (Fiorani and Schurr, 2013). To our
knowledge, there are no studies that demonstrate the use of UAVs for this
purpose. UAVs flying inside a greenhouse are exempt from conventional drone
regulations because they are not flying in public airspace. As another potential
application of this technology, we provide the example of a phenotyping study of
300 different accessions of Arabidopsis thaliana (Fig. 4) grown in the greenhouses
of the Max-Planck Institute of Molecular Plant Physiology in Potsdam (Germany).
We used a NAV (Microdrone Parrot®) modified to carry a high-resolution micro-
camera vertically and pointing downwards (Fig. 4a), which we used to determine
canopy leaf area and relative growth rates between accessions (Fig. 4b). This
example illustrates how this technology can be applied as a low-cost alternative to
the more expensive conventional phenotyping systems. In another example, UAVs
were recently employed as high-throughput phenotyping platforms, measuring the
primary and secondary metabolic responses to drought in a Mediterranean

vineyard with the physiological responses at leaf, stem and whole-plant level. This
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information can be highly useful for crop breeding strategies beyond experiments

in greenhouses and pots (Gago et al. 2017).

Concluding remarks

The rapid increase and improvement of UAV technologies enabled a greatly
increase both in the spatial and temporal resolution of agricultural measurements,
individual plants or entire fields; thus, offering new opportunities for
ecophysiology and precision agriculture. Nevertheless, it has also been suggested
that we are currently inside a "cycle of hype", and that the real capacities of UAVs
have been highly exaggerated (Freeman and Freeland, 2015). To demonstrate that
UAVs provide more than hype for precision agricultural applications, the UAV
industry and research community must now develop user-friendly technologies
and methodologies for providing useful tools in the hands of farmers. In this
respect, NAVs and MAVs hold more promise than larger UAVs carrying more
complex sensors, and may be easily used by farmers for a range of precision
farming and resource management applications. By flying much closer to their
targets, MAVs and NAVs will also provide a new dimension of crop
information—field-quality data collected rapidly over entire fields and orchards,
with far less need for complex calibration steps.

If this potential is achieved, the use of UAVs will grow beyond the current
group of higher specialized users (researchers and drone service providers). Such
wider use of UAVs may be key to ushering in the long-heralded "Blue
Revolution", wherein output is increased for much lower water and nutrient use,

thereby improving the environmental sustainability of agriculture.
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Legends

Fig. 1. UAV papers published in plant sciences from 2003 to 2018 (black line),
specific papers employing NAVs and MAVs are illustrated by red columns. The
search was performed using Web of Science® database using the search field
"topic”, being the keywords, categories and criteria described in the main text.

Fig. 2. Different types of NAVs and MAVs: from upper left to right Microdrone
Parrot ® modified with a HD RGB camera, customized racing-drone with X flight
board, and the Spark and Mavic Pro from DJI®.

Figure 3. (a) MAVs DJI Mavic Pro flying between the rows of a vineyard; (b)
aerial view of the vines row where grape clusters are clearly visible; and (c) detail
of the previous image with a resolution allowing the direct count of clusters per
vine.

Figure 4. (a) NAV Microdrone Parrot® modified to carry and support an external
high-resolution camera pointing downwards; (b) the NAV flying over a
phenotyping experiment of Arabidopsis thaliana ecotypes inside a greenhouse at
the Max-Planck Institute of Molecular Plant Physiology (Potsdam, Germany), (c)
orthophotography generated from the NAV, useful to estimate total leaf area
(zenithally exposed) and growth thus characterizing the phenotypes.

John Wiley & Sons



Page 17 of 19 Current Protocols

oONOULTDh WN =

O

25 Fig. 1.

27 1354x762mm (72 x 72 DPI)

60 John Wiley & Sons



oNOULL A~ WN =

180

m: B K E B

Number SCI papers

Z

Current Protocols

2003 2004 2005 FOOE 2007 2008 2004 2010 1011

Fig. 2.

2012 2013 2014 2015 2016 2017

196x123mm (72 x 72 DPI)

John Wiley & Sons

Page 18 of 19



Page 19 of 19 Current Protocols

oONOULTDh WN =

O

45 Fig. 3.

47 256x340mm (72 x 72 DPI)

60 John Wiley & Sons



oONOULLDh WN =

Current Protocols

Fig. 4.

257x192mm (72 x 72 DPI)

John Wiley & Sons

Page 20 of 19



